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Computer simulation study on the swelling of a model polymer network by a chainlike solvent
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A molecular-dynamics—particle-transfer method was used to study the swelling of a model polymer network
by a short chain solvent. The solvent chains were transferred depending on the difference between the solvent
chemical potentials in the coupled simulation boxes, containing pure solvent and gel, respectively. The chemi-
cal potentials were computed via the Rosenbluth sampling method. The simulated swelling ratio of the network
under subcritical and supercritical conditions is compared with the prediction of a modified Flory-Huggins
theory. In addition, the chains exhibit markedly different structural and dynamic properties in the correspond-
ing phases due to the constraint imposed by the network, which are discussed in detail.
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I. INTRODUCTION “center” throughout this paper. In Ref.17] a combined
molecular-dynamics—Widom-test-particle method was used
The relation between the molecular structure of a polymeand the results were compared to an extended Flory-Huggins
network and its swelling behavior due to the adsorption ofmodel. This allowed us to extend simulation data or fill gaps
solvent is difficult to establish on the microscopic level. Thisin the latter, and thus avoid computationally expensive simu-
is because experimentally it is difficult to synthesize polymerations. The complex swelling behavior under subcritical as
networks with well defined structure. On the other hand it iswell as under supercritical conditions was attributed to the
easy to study a defect-free polymer network in computecompeting effects of the excess solvent chemical potential
simulations. And thus a significant number of simulationdifference and the solvent density ratio computed for the two
studies focusing on the structural and dynamic properties gbhasegi.e., the pure bulk solvent and the solvent in the) gel
polymer networks already exi$fl—8]. Simulations of the The present paper is intended to modify and extend the al-
swelling of gels, which explicitly include solvent molecules, gorithm to allow for chainlike solvents, and to study their
are scarce, however. Recently, Kenkateal. have used com- effects. It should be noted that not only the development of
bined discontinuous molecular dynamics and Monte Carlan algorithm including chainlike solvent is of interest, but
simulations to study the swelling of athermal polymer net-the swelling of a network by a chainlike solvent and the
works containing a hard-sphere solvg¢8i. They also pro- solvent behavior inside the network are also of great practi-
posed an analytical theory as an extension of their previousal interest in the petroleum industry. We use a similar
work [10] and found that the theoretical results coincide withmethod as in Ref.17] to investigate the swelling of a model
their simulations. In a grand canonical-type ensemble, Esaetwork by a subcritical as well as supercritical multicenter
cobedo and de Pablo have used the Monte Carlo method {gix-centey solvent. During the molecular dynamics simula-
discuss the swelling of athermidl1], square well, and modi- tions the solvent chemical potentials are calculated via the
fied Lennard-Jones polymer networks2]. They report on  Rosenbluth sampling meth¢#lg] instead of the Widom-test-
simulation results for the solvent fraction and the networkparticle method 19]. The resulting solvent chemical poten-
packing fraction as a function of temperature and pressure. Itials in the network simulation cell and in a simulation cell
addition, the effects of network chain length were also invescontaining bulk solvent onlyat identical thermodynamic
tigated. The simulation results are in good agreement witltonditions are used to transfer solvent particles between the
their equations of stafel1] for the hard-sphere network and simulation cells until chemical equilibrium is attained.
with a combined Sanchez-Lacombe-Flory-Rehner theory The proposed simulation method is generally useful and
[12,13 for a soft-sphere network, respectively. Using aeffective for studying chemical equilibria of polymer net-
newly developed Gibbs-ensemble molecular dynamicsvorks in contact with explicit solvent under variable thermo-
method[14,15, Aydt and Hentschke reported dynamic asdynamic conditions. For example, our algorithm, in contrast
well as structural results for swelling equilibria in model to pure Monte Carlo methods, also allows the study of dif-
network-solvent systems using Lennard-Jones nonbonded ifiusion of solvent inside the network as a function of tem-
teractiong 16)]. perature and pressure. In this work, we mainly discuss the
The present work is a part of a systematic computer studyemperature and pressure dependences of the network swell-
of network swelling using explicit solvent, where a first pa- ing ratio g. The modified Flory-Huggins theory described in
per, Ref[17], dealt with one-center solvents and was used taRef. [17], which previously was found to yield an excellent
develop the general algorithm. Note that in H&f7] we used qualitative description of the system for a one-center solvent,
the expression “one site” instead of “one center.” To avoid is found to be less good in the present case. Furthermore, the
any misleading connection to lattice simulations we adoptependence of the solvent conformation on the different ther-
modynamic conditions is also discussed. The self-diffusion
of the solvent in the network and in the bulk phase are cal-
* Author to whom correspondence should be addressed. culated via the Einstein relation. Their comparison illustrates
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the hindrance effects due to the network beads on the solventientation of a segment is defined via the torsion angjle
diffusion. Finally, the chain end-to-end autocorrelation func-between the plane spanned by the previous two segments and
tion is obtained showing different relaxation times in thethe plane spanned by the previous segment and the current

network as compared to the bulk solvent. segment. Herep is an integral multiple of z/k. Note that
using a large value df, i.e., k=50, improves the sampling.
II. SIMULATION METHOD AND MODEL Equations(4) and (5) are implemented as follows. An al-
CONSTRUCTION ready existing chain is extended by a bandhose direction

_ ] _in spacg is chosen with probabilityexd — Bu;(j) [}/w; . Here

In this paper, we continue to use the “two-box—particle-, (j) includes all interactions of the newly added segment
transfer” method introduced in Ref17]. Here two simula-  \yith the rest of the chain as well as the interactions with all
tion boxes will reach chemical equilibrium by exchanging gther chains. Because thepossible orientations of segment
solvent particles. One of the boxes contains solvent only, depend on the segmerits 1 andi—2, the first two chain
whereas the other contains the model polymer network pensegments are special. They are constructed as the extensions
etrated by solvent particles. The latter are chainlike particlegs 5 virtual chain consisting of two bonds, which is inserted
consisting of six sequentially bonded interaction centers. Thg, ihe system at a random point and with random orientation.
solvent exchange is controlled by direct comparison of the The potential energy/ in each simulation box is given by
respective solvent chemical potentials that we calculate vi@[:MLJJrunetJruval, wherel,, is the nonbonded Lennard-

Rosenbluth sampling. The simple cubic model network, useqgnes potential energy,,.;, which equals zero in the solvent
in all simulations, is the same as in R¢LE], i.e., every 4y s the interaction energy between bonded network

second interaction center along a network chain is a CroSSeads, andi,,, is the intramolecular valence energy of the

link with sixfold coordination. The sixfold coordination is s'Lx-center solvent. The first two terms are introduced in the

somewhat unusual, because it is not realized in real chemic% evious papef17]; in addition, we have the intramolecular
networks. However, the cubic structure is a convenient SimVaIence potential

plification, which does not alter the qualitative effects.
The solvent chemical potential in the two boxes,(« U, 1= UpondT Upend™ Utors » (6)
=0,1), can be written ag20]

y in which
Moo= Mo+ HG (1) -
) _ ij
whereu!?, the ideal gas chemical potential, is given by Ubond—<i2j> 2 (i —loij)?, (7)
. (N, +1)A3 9
id @
why =k Tln{— . 2) K\
. (Vo) Upend™ E I2—](49ijk— 00ijk)%, €)
(ijk)
Here,N_(a=0,1) is the number of solvent particles in simu-
lation box & with volumeV,,, A is the thermal wavelength and
of the solventkg is the Boltzmann constant, aridis the
temperatureut”, thg excess part of the chemical potential, Urors= 2 Ca[ 1+ cod biji) 1+ Col 1— cog 2 b ]
can be calculated via the Rosenbluth sampling mefl26di (iikl)
e + o[ 1+ 0% 3j)]. ©
w=—kgTIn <V“W>}, (3) Here, kf} is the bond stretching force constahy;; is the
(Vo) equilibrium bond Iengthki‘}k is the valence angle force con-

stant, andd;ji is the equilibrium valence angle. The torsion
Sshergy is considered in E@9), wherec,, ¢c,, andcg are
parameter§21]. The notation(ij ) means that the summation
includes all the pairs of andj, which are directly bonded.
Similarly the notation(ijk) refers to all bond angles formed
W by the triplesi, j, and k. And, finally, (ijkl) includes all
- (4) quadruples belonging to all possible dihedral angles. All
k force field parameters together with the thermostat and the
barostat coupling constants are compiled in Table I.

The equations of motion governing the time evolution in

whereW is the Rosenbluth facto¢) in the above equations
denotes ensemble averages under constant temperature
pressure conditions. For a certain chain configuratiothe
Rosenbluth factor reads

|
=1

w(n)=]1

wherew; is defined via

K each individual simulation box are the same as in RET],
_ —Bu(i1. 5 i.e., we continue to use the V\_/eak coupll_ng met_hod due to
Wi j§=:l exil —pui())] © Berendseret al.[22]. The equations of motion are integrated

via the leapfrog algorithni23]. The solvent exchange be-
Herel =5 is the number of chain segments or boridss,the  tween boxes, on the other hand, is governed by the following
total number of segment orientations, afer 1/kkgT. The  procedure. During th&l-P-T simulation, the solvent chemi-
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TABLE I. The force field parameters and the thermostat and -13 T T - T
barostat parameters. The six-center solvent is represented by 3|mulat|ona\szfggg _______
C3-(C,)4-C3. Ny represents the network centers. Note that we from Ref. [21] =
have scaled the units to maR&°"®"'= PS°¥e"'=1 in our system.
Lennard-Jones o € m
14 + -
C, 0.2829 0.0902 1.0000
Cs 0.2980 0.1933 1.0713
Nn 0.3629 0.2924 1.1426 m@:_ /\A /\} “
b j .
Bond stretch k lo i f H " »
Cs-C, 8708.27 0.1162 18
C,-C, 8708.27 0.1162
Nn-Ny 1674.67 0.4526
Angle bend k%[ rad ?] o[ °]
C5-C,-C, 123.11 114.0 -16 o 5'0 1(')0 1éo 200
C,-C,-C, 123.11 114.0 p
time [10”steps]
Torsion Cq Co C3

FIG. 1. Reduced excess chemical potent@l.f) calculated via
X-C,-C,-X 0.6988 —0.1338 1.5582 the Rosenbluth sampling method. Solid line: present work; dashed
line: corresponding average; symbol: result taken from 2.

Parameter Value
At 1.2073 ll. RESULTS AND DISCUSSION
r 120.73 _
rolir 249.36 To our knowledge, there are no reports on the chemical

potential of our six-center solvent under the conditions con-
sidered here. However, Frenletl al. have calculated the ex-
cal potentials in the two simulation boxes are continuouslycess chemical potentials of continuously deformable chains
calculated via the Rosenbluth sampling method as describd@4] based on the Rosenbluth algorithm. By switching off the
above. The averagd$ are thereby based on X2A0* trial inner constraints of the six-center solvent moledydetting
chains constructed during=410® time steps at randomly se- Upeng @nd Uy s €qual to zerp we obtain the continuously
lected locations in each box. Other numbers of trial chaingleformable chain just mentioned, and thus we may compare
and time intervals were also tested extensively. In particulaiQur results to the corresponding results in Rg#4]. The
it was ensured that the result is independent on the procgesult is shown in Fig. 1. The number of six-center chains is
dure. The solvent exchange between the two simulatiol =216, the number of trial insertions bé;,s=4x 10%, and
boxes is controlled by direct comparison of the so computedhe number of possible orientations for one bondkis50.
solvent chemical potentials. Each six-center solvent particl&Jnder the same conditions as in RE24], i.e., p* =po®
is associated with a transfer variaklethat has the value of =0.6 andT* =kgT/e=1.2, whereo and e are the Lennard-
0 or 1 depending on whether the solvent particle resides idones parameters of one interaction center, we can reproduce
the network box or in the solvent box. This means that allthe result of Frenkegt al. very accurately.
terms in the expression for the total energy involving solvent To make the discussion more transparent, we scale the
particlei are multiplied byé; in one box and by + &, inthe  simulation temperatures and pressures by the corresponding
other. A solvent chain is transferred by changingétgalue  critical values of the bulk solvent, i.€l,=T/T, takes on the
from 0 to 1 or from 1 to 0 attempting to reduce the chemicalvalues 0.89, 1.05, 1.26, and 1.64, dhd= P/P_ takes on the
potential difference. This transfer is instantaneous, i.e., a ranvalues 1.30, 2.17, 3.29, 4.34, 6.52, 8.69, 10.86, and 13.02. In
domly selected solvent chain in one box will be forced intoaddition, we carry out extra simulationsRt=3.82 and 4.05
the other box without any attempt to change its conformatiorfor T,=0.89, and aP,=2.43 and 2.72 foil ,=1.05, respec-
during the transfer. For the chain length and densities corntively, showing the sharp change of the swelling rafidose
sidered here, this simple transfer method is fully sufficient. to the critical temperature of the pure solvésee below
Initially, we start the simulation with 256 nontransferable  For these values of, andP,, Fig. 2a) shows the result-
network beads and 24 solvent chains distributed homogdang swelling ratiosq. If we compare thesg values to the
neously in box 0, whereas box 1 contains 192 solvent chaingorresponding result for the one-center solvent shown in Fig.
To relax the unfavorable initial network geometry, & titne 3 of Ref.[17], we notice that the overall magnitude gfis
stepN-V-T simulation is executed without solvent transfer. greatly reduced in the present case of the chainlike solvent.
Subsequently, th&l-P-T simulation is carried out allowing The T,=1.64 curve shows a monotonous rise with increas-
solvent exchange. Typical simulation runs range froming pressurgwith an apparent maximum at high,). This
1x10° to 2x 1P total time steps. behavior is qualitatively similar to the swelling behavior ob-
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FIG. 2. Theq— P, isotherms. The symbols ifa) are the simu-
lation results. The lines ifb) represent the results of the modified
Flory-Huggins theory[17]. Here x=0.7/T,—0.3, y,;=0.992T,,
and xy,=0.3T,+1.1.

tained for the one-center solvent at high. The next curve,
T,=1.26, again exhibits an initial increase @vith increas-
ing P, . But this time there is a broad maximum and a sub
sequent decrease gf Again this is qualitatively similar to
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0.7 ] .
' T,=1.05, network —e—
T,=1.05, bulk —=—
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T,=1.26, bulk ---m—-
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T,=1.64, bulk -
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FIG. 3. The average percehtans torsion angles versus re-
duced pressur®, .

found comparing theory and simulation in the case of the
one-center solvent. The theory is explained in detail in Ref.
[17]. It modifies the Flory-Huggins lattice model to include
empty lattice centers, which makes the system compressible.
This model contains three parametens= —q,(€11+ €22
—2€19)/2kgT, x1=—0Q,€1/2kgT, and x,= —q,€20/2KgT;

g, is the lattice coordination, and;;, €,,, and €;, are
center-center interaction energies, where 1 indicates solvent
and 2 indicates network centgr§he interaction parameter
X1 is obtained from the critical isotherfef. Ref.[17]). The
other two parametersy and y,, are written asy=uT./T

+v andy,=Uu,T./T+v,, where herai, andv, are slightly
different fromu, andv, used in Ref[17]. The really new
adjustable parameters aneandv that are adjusted to quali-
tatively fit the simulation result obtained i =0.89 for
largeP, . Notice that the theory also yields an increasieat
T,=1.64, which is in accord with the simulatidgexcept for
large P,, where the simulation result appears to decrease
again. At T,=1.26 we do find complete qualitative agree-
ment between theory and simulation. At=1.05 the theory

the behavior of the one-center solvent Bsapproaches 1. yields a maximum at roughly the pressure where the simu-
For the one-center solvent &= 1.05 we obtained a steep latedq exhibits an apparent jump. At the lowest temperature
increase ofy at low P, and a subsequent slow decrease. ForTr=0.89, the theoreticaf] also decreases with increasing
the six-center solvent we likewisely observe a steep increas@r» but again we do not obtain the jumplike feature pro-
and a subsequent slow decrease. For 1, i.e., T,=0.89, duced by the simulation. There is, however, always the pos-
we obtain a slow increase af with decreasing pressure, Sibility that a combination of the parametersy, u,, andv,
which ends with a sudden rise. This once more is analogou§ overlooked, which would yield an overall qualitative
to our corresponding result for the one-center solvent. Exceptgreement.
here, this behavior appears inverted compared to Tthe Figure 3 compares the average perceans states for
=1.05 curve. the six-center solvent in the network and in the bulk solvent
Figure 2b) shows the isotherms obtained from our modi- at different temperatures and pressures. Titens state is
fied Flory-Huggins mode[17]. Comparing Figs. @) and defined using the “pseudocosine” methf2b]. This means
2(a), we find that the modified Flory-Huggins lattice model that a torsion anglé is considered to be in thrans state,
does not quite yield the good qualitative agreement that wevhen the relationshig; (¢ma0 =& is satisfied, where
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—_bl—l bi 1 (10) ' P,.=8.69, network @

b _qbig network, fit ———---
bi—1bi+s P=8.69,buk m

. . . bulk, fit --------
Hereb; is the bond vector between interaction cenieasid w

i +1 of the six-center solvent, ar§l( ¢may) IS given by
Ei(Pmay = _Sin290005¢max+ C05200a (11

where 6,=114° is the equilibrium bond angle, anfl, .,
=120° is the torsion barrier maximum. At lower pressures, .
the solvent molecules are more stretched in bulk state than in “m
the network as reflected by the difference of the average 8 A
percentrans shown in Fig. 3. With the increase of pressure, B
the overall difference decreases. This may be related to the
density difference in the corresponding simulation boxes. At
lower pressure, the network box represents a dense phasi 9 s L . L NS
compared to the pure solvent box, and the network beads 0 1 2 3
constrain the possible configurations of the solvent. We also(a) 1000/T [K']
find that as pressure increases, the pertranis states in the 0.8 . T . 7
bulk solvent remains constant while the same quantity in E '/Eg/Efﬁ
network shows a slight overall increase. Increasing the tem- NS
perature results in the well known reductiontofns states.
The dynamics of the solvent may be studied in part via its 0.7 |
center of mass self-diffusion coefficient, which is calculated
here via the Einstein relatioi26],

*

T > e 2 Lﬁ) 0.6
D =lim(r,(t)—r,(0)|>)/ét, 12  Z

t—oo

wherer(t) is the position of moleculeat timet. In Fig. 4a)

InD is plotted vs 1000V. Thus, assuming the Arrhenius be- 03
havior[27,28, we may calculate the activation energy from

the slope of the fitted line. Figure@ shows such a fit for

the solvent in the network as well as in its bulk statePat 0.4
=8.69. Figure 4b) shows the resulting ratios of the activa- (b) 0

tion energies in network and in the bulk state versus pres-
sure. Note that the activation energies of solvent self-
diffusion in the networkEy, are always smaller than the
corresponding quantities in bullEg. Moreover, with in-

creasing pressure, the rafig /Eg increases almost linearly.
Notice, however, thaDy<Dg also, as can be seen in Fig.

4@ as well as in Fig. 5 discussed below. Since this Another interesting dynamic property is the chain reori-

implies that the ratioD("’/D{®’<1, using the notatiorD ; : ;
) - ; entation relaxation. We define end-to-end vector autocorrela-
=DWexp(—E/kgT), we may infer that either the frequency _: : .
: . tion functions for the solvent via
of attempted molecular jumps or the number of suitable

holes permitting a jump or both is significantly reduced in

FIG. 4. (a) The InD vs 1000f. The symbols represent simula-
tion results and the lines are linear fite) The resulting ratios of
the solvent self-diffusion activation energies in the network and in
the bulk,Ey\/Eg, vs reduced pressui®, .

the network. There is no apparent reason for the first possi- P1()=(R(1)-R(0)), (13
bility, and thus the reduction of suitable holes appears most

likely under the conditions used here. Figure 5 shows the B 1 o

ratio Dy/Dg vs P,, whereDy is the self-diffusion coeffi- Pa(t)= 2(3<[R(t)'R(O)] )~ 1, (14

cient of the solvent in the gel, arfdg is the corresponding

quantity in the bulk solvent. At all temperatures the ratiocf. Ref.[27], whereR(t) is the unit end-to-end vector at time

increases gradually with increasing pressure, which indicateg |n the following, P, (t) andP,(t) are fitted to the empirical
that the hindrance effects on the solvent diffusion due to th&ohiraush-Williams-WattsKWW) equation[29]

network decrease at higher pressures. The same is true for
fixed P, and decreasing,. Comparing with Fig. ) of PRKWW ) — —(t/ )P 15
Ref.[17], we find that if the same network is swollen by a 1 (O =exd — (Ur)™, (19

one-center solvent, the ratidy/Dg overall behaves simi- KWW,
larly. P> "M (t) =exp — (t/mp)"2], (16)
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PI‘
FIG. 5. The ratio of the solvent self-diffusion coefficients in the
network and in the bulkD/Ds, as a function of reduced pressure  FIG. 7. 73(N)/71(S) as a function of reduced pressu?e. The
P,. The symbols are the results of the simulations, whereas theéymbols are the simulation results, and the lines serve to guide the

lines serve to guide the eye. eye.

where 7, and B, (k=1,2) are parameters. Assuming that ation. As a function o, between 2.17 and 10.86, the ratio
P,(t) andP,(t) approach zero at long times, the character-7{/ 75 ranges from 1.827 to 2.407 &= 0.89 and from 1.496
istic time constants are$=[;dtP,(t) and 75=[5dtP,(t),  to 1.887 aff,=1.64 in the bulk solvent. It ranges from 2.128
respectivelyf27,30. Figure 6 show®,(t) calculated via Eq. to 3.085 afT,=0.89 and from 1.950 to 2.684 & =1.64 in
(13) and the corresponding fitted curve obtained via@§)  the network. In the network as well as in the bulk solvent, we
for two typical simulation conditions. Large departuresgof find that the ratio decreases with increasing temperature. Fur-
from 1 (we observe an overall variation ranging from 1.1 tothermore, the values in the network are higher than the cor-
1.9) reflect the complexity of the end-to-end vector relax-responding values in the bulk solvent. Thg 75 is directly
related to the nature of rotation process, i%/,75=3.0 in-

1 r r . dicates an isotropic rotational diffusion and smaller values
T=11-'.?)1=>'0f§t - indicate large angular jumps of the molecu|@d]. There-

| r Tr=0:89 S fore, here it is easier to activate large angular jumps with
\ T=0.89, fit ------- increasing temperature. Besides the rafibrs, the network

effects on the relaxation of the end-to-end vector are also of
interest. In Fig. 7, the ratio of{(N)/75(S) is plotted vsP,,
where 7{(N) is the characteristic relaxation time in the net-
work, and 75(S) is the corresponding quantity in the bulk
- 05T ] solvent. Generally, the ratio tends to 1.0 with increasing pres-
e sure. This shows that the hindrance effect due to the network
N\ is larger at lower pressure, where the relaxation time in the
N network is close to twice that in the bulk solvent. Notice that
when the pressure increases, the solvent box has a similar
density as the network box, therefore, the hindrance effects
S from network beads are not as apparent as before. Notice
------------- also thatr(N)/7{(S) increases with increasing temperature.

0 1 2 3 4 5 IV. CONCLUSION

; 3
time [10°steps] The present work is a part of a systematic computer study

FIG. 6. P, as a function of time. The solid lines are the simu- Of network swelling using an explicit solvent. In R¢iL7]
lation results and the dashed lines are fitted curves calculated viand in this work, where we focus on a short-chain solvent,
Eq.(15). ForT,=1.05,P,=4.34, 3,=1.6318, and-,=1.0878; for we have developed an algorithm, that can be used to study
T,=0.89, P,=4.34, 8,=1.2201, andr,=1.6732. not only swelling of a polymer network by an explicit sol-

041807-6



COMPUTER SIMULATION STUDY ON THE SWELLING . .. PHYSICAL REVIEW B5 041807
vent, but more generally the chemical equilibrium of a poly-Huggins mean field model. Even though this is a very simple
mer network in contact with an explicit solvent under vari- lattice model, it can be shown to yield a good description of
able thermodynamic conditions. For example, our algorithmthe thermodynamics of many real systefssch as alkane

in contrast to pure Monte Carlo methods, also allows themixtures; this has been shown for instance in [R&8]). Our
study of diffusion of solvent inside the network as a functionextension contains parameters, as does the original model,

of temperature and pressug@nd with some known modifi-
cations also under anisotropic external streshis is an im-

which can be adjusted to the simulation data in order to
allow the above mentioned predictions beyond or in between

portant aspect in industrial studies of the performance of adsimulation results. This idea works nicely for small solvents

hesives(e.g., environmental attack on adhesive joir&g]).

[17] and for networks with increased mesh size. It may not

Also in Ref. [17] we have obtained a simple analytic be much good, however, for larger solvents as we show here,
theory with the motivation to extend or fill gaps in the datai.e., here the model could use improvement. Currently, work
obtained via the computationally expensive simulations. Thés in progress in which we systematically vary the mesh size

most suitable candidate was seemed to be the simple Florgf the model network as well as the solvent di3d].
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