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Computer simulation study on the swelling of a model polymer network by a chainlike solvent
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A molecular-dynamics–particle-transfer method was used to study the swelling of a model polymer network
by a short chain solvent. The solvent chains were transferred depending on the difference between the solvent
chemical potentials in the coupled simulation boxes, containing pure solvent and gel, respectively. The chemi-
cal potentials were computed via the Rosenbluth sampling method. The simulated swelling ratio of the network
under subcritical and supercritical conditions is compared with the prediction of a modified Flory-Huggins
theory. In addition, the chains exhibit markedly different structural and dynamic properties in the correspond-
ing phases due to the constraint imposed by the network, which are discussed in detail.
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I. INTRODUCTION

The relation between the molecular structure of a polym
network and its swelling behavior due to the adsorption
solvent is difficult to establish on the microscopic level. Th
is because experimentally it is difficult to synthesize polym
networks with well defined structure. On the other hand i
easy to study a defect-free polymer network in compu
simulations. And thus a significant number of simulati
studies focusing on the structural and dynamic propertie
polymer networks already exist@1–8#. Simulations of the
swelling of gels, which explicitly include solvent molecule
are scarce, however. Recently, Kenkareet al.have used com-
bined discontinuous molecular dynamics and Monte Ca
simulations to study the swelling of athermal polymer n
works containing a hard-sphere solvent@9#. They also pro-
posed an analytical theory as an extension of their prev
work @10# and found that the theoretical results coincide w
their simulations. In a grand canonical-type ensemble,
cobedo and de Pablo have used the Monte Carlo metho
discuss the swelling of athermal@11#, square well, and modi
fied Lennard-Jones polymer networks@12#. They report on
simulation results for the solvent fraction and the netwo
packing fraction as a function of temperature and pressure
addition, the effects of network chain length were also inv
tigated. The simulation results are in good agreement w
their equations of state@11# for the hard-sphere network an
with a combined Sanchez-Lacombe–Flory-Rehner the
@12,13# for a soft-sphere network, respectively. Using
newly developed Gibbs-ensemble molecular dynam
method @14,15#, Aydt and Hentschke reported dynamic
well as structural results for swelling equilibria in mod
network-solvent systems using Lennard-Jones nonbonde
teractions@16#.

The present work is a part of a systematic computer st
of network swelling using explicit solvent, where a first p
per, Ref.@17#, dealt with one-center solvents and was used
develop the general algorithm. Note that in Ref.@17# we used
the expression ‘‘one site’’ instead of ‘‘one center.’’ To avo
any misleading connection to lattice simulations we ad
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‘‘center’’ throughout this paper. In Ref.@17# a combined
molecular-dynamics–Widom-test-particle method was u
and the results were compared to an extended Flory-Hug
model. This allowed us to extend simulation data or fill ga
in the latter, and thus avoid computationally expensive sim
lations. The complex swelling behavior under subcritical
well as under supercritical conditions was attributed to
competing effects of the excess solvent chemical poten
difference and the solvent density ratio computed for the t
phases~i.e., the pure bulk solvent and the solvent in the ge!.
The present paper is intended to modify and extend the
gorithm to allow for chainlike solvents, and to study the
effects. It should be noted that not only the developmen
an algorithm including chainlike solvent is of interest, b
the swelling of a network by a chainlike solvent and t
solvent behavior inside the network are also of great pra
cal interest in the petroleum industry. We use a simi
method as in Ref.@17# to investigate the swelling of a mode
network by a subcritical as well as supercritical multicen
~six-center! solvent. During the molecular dynamics simul
tions the solvent chemical potentials are calculated via
Rosenbluth sampling method@18# instead of the Widom-test
particle method@19#. The resulting solvent chemical poten
tials in the network simulation cell and in a simulation ce
containing bulk solvent only~at identical thermodynamic
conditions! are used to transfer solvent particles between
simulation cells until chemical equilibrium is attained.

The proposed simulation method is generally useful a
effective for studying chemical equilibria of polymer ne
works in contact with explicit solvent under variable therm
dynamic conditions. For example, our algorithm, in contr
to pure Monte Carlo methods, also allows the study of d
fusion of solvent inside the network as a function of te
perature and pressure. In this work, we mainly discuss
temperature and pressure dependences of the network s
ing ratio q. The modified Flory-Huggins theory described
Ref. @17#, which previously was found to yield an excelle
qualitative description of the system for a one-center solve
is found to be less good in the present case. Furthermore
dependence of the solvent conformation on the different th
modynamic conditions is also discussed. The self-diffus
of the solvent in the network and in the bulk phase are c
culated via the Einstein relation. Their comparison illustra
©2002 The American Physical Society07-1
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Z.-Y. LU AND R. HENTSCHKE PHYSICAL REVIEW E65 041807
the hindrance effects due to the network beads on the sol
diffusion. Finally, the chain end-to-end autocorrelation fun
tion is obtained showing different relaxation times in t
network as compared to the bulk solvent.

II. SIMULATION METHOD AND MODEL
CONSTRUCTION

In this paper, we continue to use the ‘‘two-box–partic
transfer’’ method introduced in Ref.@17#. Here two simula-
tion boxes will reach chemical equilibrium by exchangi
solvent particles. One of the boxes contains solvent o
whereas the other contains the model polymer network p
etrated by solvent particles. The latter are chainlike partic
consisting of six sequentially bonded interaction centers.
solvent exchange is controlled by direct comparison of
respective solvent chemical potentials that we calculate
Rosenbluth sampling. The simple cubic model network, u
in all simulations, is the same as in Ref.@16#, i.e., every
second interaction center along a network chain is a c
link with sixfold coordination. The sixfold coordination i
somewhat unusual, because it is not realized in real chem
networks. However, the cubic structure is a convenient s
plification, which does not alter the qualitative effects.

The solvent chemical potential in the two boxes,ma(a
50,1), can be written as@20#

ma5ma
id1ma

ex , ~1!

wherema
id , the ideal gas chemical potential, is given by

ma
id5kBT lnF ~Na11!L3

^Va& G . ~2!

Here,Na(a50,1) is the number of solvent particles in sim
lation boxa with volumeVa , L is the thermal wavelength
of the solvent,kB is the Boltzmann constant, andT is the
temperature.ma

ex , the excess part of the chemical potenti
can be calculated via the Rosenbluth sampling method@20#
via

ma
ex52kBT lnF ^VaW&

^Va& G , ~3!

whereW is the Rosenbluth factor.^& in the above equation
denotes ensemble averages under constant temperatur
pressure conditions. For a certain chain configurationn, the
Rosenbluth factor reads

W~n!5)
i 51

l
wi

k
, ~4!

wherewi is defined via

wi5(
j 51

k

exp@2bui~ j !#. ~5!

Herel 55 is the number of chain segments or bonds,k is the
total number of segment orientations, andb51/kBT. The
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orientation of a segment is defined via the torsion anglef
between the plane spanned by the previous two segments
the plane spanned by the previous segment and the cu
segment. Heref is an integral multiple of 2p/k. Note that
using a large value ofk, i.e., k550, improves the sampling
Equations~4! and ~5! are implemented as follows. An al
ready existing chain is extended by a bondi, whose direction
in spacej is chosen with probability$exp@2bui(j)#%/wi . Here
ui( j ) includes all interactions of the newly added segm
with the rest of the chain as well as the interactions with
other chains. Because thek possible orientations of segmen
i depend on the segmentsi 21 andi 22, the first two chain
segments are special. They are constructed as the exten
of a virtual chain consisting of two bonds, which is insert
in the system at a random point and with random orientati

The potential energyU in each simulation box is given by
U5ULJ1Unet1Uval , whereULJ is the nonbonded Lennard
Jones potential energy,Unet , which equals zero in the solven
box, is the interaction energy between bonded netw
beads, andUval is the intramolecular valence energy of th
six-center solvent. The first two terms are introduced in
previous paper@17#; in addition, we have the intramolecula
valence potential

Uval5ubond1ubend1utors , ~6!

in which

ubond5(̂
i j &

ki j
b

2
~ l i j 2 l 0,i j !

2, ~7!

ubend5 (
^ i jk &

ki jk
u

2
~u i jk2u0,i jk !2, ~8!

and

utors5 (
^ i jkl &

c1@11cos~f i jkl !#1c2@12cos~2f i jkl !#

1c3@11cos~3f i jkl !#. ~9!

Here, ki j
b is the bond stretching force constant,l 0,i j is the

equilibrium bond length,ki jk
u is the valence angle force con

stant, andu0,i jk is the equilibrium valence angle. The torsio
energy is considered in Eq.~9!, wherec1 , c2, and c3 are
parameters@21#. The notation̂ i j & means that the summatio
includes all the pairs ofi and j, which are directly bonded
Similarly the notation̂ i jk & refers to all bond angles forme
by the triples i, j, and k. And, finally, ^ i jkl & includes all
quadruples belonging to all possible dihedral angles.
force field parameters together with the thermostat and
barostat coupling constants are compiled in Table I.

The equations of motion governing the time evolution
each individual simulation box are the same as in Ref.@17#,
i.e., we continue to use the weak coupling method due
Berendsenet al. @22#. The equations of motion are integrate
via the leapfrog algorithm@23#. The solvent exchange be
tween boxes, on the other hand, is governed by the follow
procedure. During theN-P-T simulation, the solvent chemi
7-2
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COMPUTER SIMULATION STUDY ON THE SWELLING . . . PHYSICAL REVIEW E65 041807
cal potentials in the two simulation boxes are continuou
calculated via the Rosenbluth sampling method as descr
above. The averages^& are thereby based on 1.23104 trial
chains constructed during 43103 time steps at randomly se
lected locations in each box. Other numbers of trial cha
and time intervals were also tested extensively. In particu
it was ensured that the result is independent on the pr
dure. The solvent exchange between the two simula
boxes is controlled by direct comparison of the so compu
solvent chemical potentials. Each six-center solvent part
is associated with a transfer variablej, that has the value o
0 or 1 depending on whether the solvent particle reside
the network box or in the solvent box. This means that
terms in the expression for the total energy involving solv
particlei are multiplied byj i in one box and by 12j i in the
other. A solvent chain is transferred by changing itsj value
from 0 to 1 or from 1 to 0 attempting to reduce the chemi
potential difference. This transfer is instantaneous, i.e., a
domly selected solvent chain in one box will be forced in
the other box without any attempt to change its conformat
during the transfer. For the chain length and densities c
sidered here, this simple transfer method is fully sufficien

Initially, we start the simulation with 256 nontransferab
network beads and 24 solvent chains distributed homo
neously in box 0, whereas box 1 contains 192 solvent cha
To relax the unfavorable initial network geometry, a 105 time
stepN-V-T simulation is executed without solvent transfe
Subsequently, theN-P-T simulation is carried out allowing
solvent exchange. Typical simulation runs range fro
13106 to 23106 total time steps.

TABLE I. The force field parameters and the thermostat a
barostat parameters. The six-center solvent is represented
C3-(C2)4-C3 . NN represents the network centers. Note that
have scaled the units to makeTc

solvent5Pc
solvent51 in our system.

Lennard-Jones s e m

C2 0.2829 0.0902 1.0000
C3 0.2980 0.1933 1.0713
NN 0.3629 0.2924 1.1426

Bond stretch kb l 0

C3-C2 8708.27 0.1162
C2-C2 8708.27 0.1162
NN-NN 1674.67 0.4526

Angle bend ku@rad22# u0@°#

C3-C2-C2 123.11 114.0
C2-C2-C2 123.11 114.0

Torsion c1 c2 c3

X-C2-C2-X 0.6988 20.1338 1.5582

Parameter Value

Dt 1.2073
tT 120.73

tP /kT 249.36
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III. RESULTS AND DISCUSSION

To our knowledge, there are no reports on the chem
potential of our six-center solvent under the conditions c
sidered here. However, Frenkelet al. have calculated the ex
cess chemical potentials of continuously deformable cha
@24# based on the Rosenbluth algorithm. By switching off t
inner constraints of the six-center solvent molecule~putting
ubend and utors equal to zero!, we obtain the continuously
deformable chain just mentioned, and thus we may comp
our results to the corresponding results in Ref.@24#. The
result is shown in Fig. 1. The number of six-center chains
N5216, the number of trial insertions isNins543104, and
the number of possible orientations for one bond isk550.
Under the same conditions as in Ref.@24#, i.e., r* 5rs3

50.6 andT* 5kBT/e51.2, wheres ande are the Lennard-
Jones parameters of one interaction center, we can repro
the result of Frenkelet al. very accurately.

To make the discussion more transparent, we scale
simulation temperatures and pressures by the correspon
critical values of the bulk solvent, i.e.,Tr5T/Tc takes on the
values 0.89, 1.05, 1.26, and 1.64, andPr5P/Pc takes on the
values 1.30, 2.17, 3.29, 4.34, 6.52, 8.69, 10.86, and 13.02
addition, we carry out extra simulations atPr53.82 and 4.05
for Tr50.89, and atPr52.43 and 2.72 forTr51.05, respec-
tively, showing the sharp change of the swelling ratioq close
to the critical temperature of the pure solvent~see below!.

For these values ofTr andPr , Fig. 2~a! shows the result-
ing swelling ratiosq. If we compare theseq values to the
corresponding result for the one-center solvent shown in F
3 of Ref. @17#, we notice that the overall magnitude ofq is
greatly reduced in the present case of the chainlike solv
The Tr51.64 curve shows a monotonous rise with incre
ing pressure~with an apparent maximum at highPr). This
behavior is qualitatively similar to the swelling behavior o

d
by

FIG. 1. Reduced excess chemical potential (bme) calculated via
the Rosenbluth sampling method. Solid line: present work; das
line: corresponding average; symbol: result taken from Ref.@24#.
7-3
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Z.-Y. LU AND R. HENTSCHKE PHYSICAL REVIEW E65 041807
tained for the one-center solvent at highTr . The next curve,
Tr51.26, again exhibits an initial increase ofq with increas-
ing Pr . But this time there is a broad maximum and a su
sequent decrease ofq. Again this is qualitatively similar to
the behavior of the one-center solvent asTr approaches 1
For the one-center solvent atTr51.05 we obtained a stee
increase ofq at low Pr and a subsequent slow decrease. F
the six-center solvent we likewisely observe a steep incre
and a subsequent slow decrease. ForTr,1, i.e., Tr50.89,
we obtain a slow increase ofq with decreasing pressure
which ends with a sudden rise. This once more is analog
to our corresponding result for the one-center solvent. Exc
here, this behavior appears inverted compared to theTr
51.05 curve.

Figure 2~b! shows the isotherms obtained from our mo
fied Flory-Huggins model@17#. Comparing Figs. 2~b! and
2~a!, we find that the modified Flory-Huggins lattice mod
does not quite yield the good qualitative agreement that

FIG. 2. Theq2Pr isotherms. The symbols in~a! are the simu-
lation results. The lines in~b! represent the results of the modifie
Flory-Huggins theory@17#. Here x50.7/Tr20.3, x150.992/Tr ,
andx250.3/Tr11.1.
04180
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found comparing theory and simulation in the case of
one-center solvent. The theory is explained in detail in R
@17#. It modifies the Flory-Huggins lattice model to includ
empty lattice centers, which makes the system compress
This model contains three parameters,x52qz(e111e22

22e12)/2kBT, x152qze11/2kBT, and x252qze22/2kBT;
qz is the lattice coordination, ande11, e22, and e12 are
center-center interaction energies, where 1 indicates sol
and 2 indicates network centers!. The interaction paramete
x1 is obtained from the critical isotherm~cf. Ref. @17#!. The
other two parameters,x and x2, are written asx5uTc /T
1v andx25u2Tc /T1v2, where hereu2 andv2 are slightly
different from u2 and v2 used in Ref.@17#. The really new
adjustable parameters areu andv that are adjusted to quali
tatively fit the simulation result obtained atTr50.89 for
largePr . Notice that the theory also yields an increasingq at
Tr51.64, which is in accord with the simulation~except for
large Pr , where the simulation result appears to decre
again!. At Tr51.26 we do find complete qualitative agre
ment between theory and simulation. AtTr51.05 the theory
yields a maximum at roughly the pressure where the sim
latedq exhibits an apparent jump. At the lowest temperatu
Tr50.89, the theoreticalq also decreases with increasin
Pr , but again we do not obtain the jumplike feature pr
duced by the simulation. There is, however, always the p
sibility that a combination of the parametersu, v, u2, andv2
is overlooked, which would yield an overall qualitativ
agreement.

Figure 3 compares the average percenttrans states for
the six-center solvent in the network and in the bulk solv
at different temperatures and pressures. Thetrans state is
defined using the ‘‘pseudocosine’’ method@25#. This means
that a torsion anglei is considered to be in thetrans state,
when the relationshipj i(fmax)>j̄ i is satisfied, where

FIG. 3. The average percenttrans torsion angles versus re
duced pressurePr .
7-4
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COMPUTER SIMULATION STUDY ON THE SWELLING . . . PHYSICAL REVIEW E65 041807
j̄ i5
bi 21•bi 11

bi 21bi 11
. ~10!

Herebi is the bond vector between interaction centersi and
i 11 of the six-center solvent, andj i(fmax) is given by

j i~fmax!52sin2u0cosfmax1cos2u0 , ~11!

where u05114° is the equilibrium bond angle, andfmax
5120° is the torsion barrier maximum. At lower pressur
the solvent molecules are more stretched in bulk state tha
the network as reflected by the difference of the aver
percenttrans shown in Fig. 3. With the increase of pressu
the overall difference decreases. This may be related to
density difference in the corresponding simulation boxes
lower pressure, the network box represents a dense p
compared to the pure solvent box, and the network be
constrain the possible configurations of the solvent. We a
find that as pressure increases, the percenttrans states in the
bulk solvent remains constant while the same quantity
network shows a slight overall increase. Increasing the t
perature results in the well known reduction oftrans states.

The dynamics of the solvent may be studied in part via
center of mass self-diffusion coefficient, which is calculat
here via the Einstein relation@26#,

D5 lim
t→`

^urW i~ t !2rW i~0!u2&/6t, ~12!

whererW i(t) is the position of moleculei at timet. In Fig. 4~a!
ln D is plotted vs 1000/T. Thus, assuming the Arrhenius b
havior @27,28#, we may calculate the activation energy fro
the slope of the fitted line. Figure 4~a! shows such a fit for
the solvent in the network as well as in its bulk state atPr
58.69. Figure 4~b! shows the resulting ratios of the activ
tion energies in network and in the bulk state versus p
sure. Note that the activation energies of solvent s
diffusion in the network,EN , are always smaller than th
corresponding quantities in bulk,ES . Moreover, with in-
creasing pressure, the ratioEN /ES increases almost linearly
Notice, however, thatDN,DS also, as can be seen in Fi
4~a! as well as in Fig. 5 discussed below. Since t
implies that the ratioDN

(0)/DS
(0),1, using the notationD

5D (0)exp(2E/kBT), we may infer that either the frequenc
of attempted molecular jumps or the number of suita
holes permitting a jump or both is significantly reduced
the network. There is no apparent reason for the first po
bility, and thus the reduction of suitable holes appears m
likely under the conditions used here. Figure 5 shows
ratio DN /DS vs Pr , whereDN is the self-diffusion coeffi-
cient of the solvent in the gel, andDS is the corresponding
quantity in the bulk solvent. At all temperatures the ra
increases gradually with increasing pressure, which indic
that the hindrance effects on the solvent diffusion due to
network decrease at higher pressures. The same is tru
fixed Pr and decreasingTr . Comparing with Fig. 7~c! of
Ref. @17#, we find that if the same network is swollen by
one-center solvent, the ratioDN /DS overall behaves simi-
larly.
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Another interesting dynamic property is the chain reo
entation relaxation. We define end-to-end vector autocorr
tion functions for the solvent via

P1~ t !5^R~ t !•R~0!&, ~13!

P2~ t !5
1

2
~3^@R~ t !•R~0!#2&21!, ~14!

cf. Ref.@27#, whereR(t) is the unit end-to-end vector at tim
t. In the following,P1(t) andP2(t) are fitted to the empirica
Kohlraush-Williams-Watts~KWW! equation@29#

P1
KWW~ t !5exp@2~ t/t1!b1#, ~15!

P2
KWW~ t !5exp@2~ t/t2!b2#, ~16!

FIG. 4. ~a! The lnD vs 1000/T. The symbols represent simula
tion results and the lines are linear fits.~b! The resulting ratios of
the solvent self-diffusion activation energies in the network and
the bulk,EN /ES , vs reduced pressurePr .
7-5
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where tk and bk (k51,2) are parameters. Assuming th
P1(t) andP2(t) approach zero at long times, the charact
istic time constants aret1

c5*0
`dtP1(t) andt2

c5*0
`dtP2(t),

respectively@27,30#. Figure 6 showsP1(t) calculated via Eq.
~13! and the corresponding fitted curve obtained via Eq.~15!
for two typical simulation conditions. Large departures ofb
from 1 ~we observe an overall variation ranging from 1.1
1.9! reflect the complexity of the end-to-end vector rela

FIG. 5. The ratio of the solvent self-diffusion coefficients in t
network and in the bulk,DN /DS , as a function of reduced pressu
Pr . The symbols are the results of the simulations, whereas
lines serve to guide the eye.

FIG. 6. P1 as a function of time. The solid lines are the sim
lation results and the dashed lines are fitted curves calculated
Eq. ~15!. ForTr51.05, Pr54.34,b151.6318, andt151.0878; for
Tr50.89, Pr54.34, b151.2201, andt151.6732.
04180
-

-

ation. As a function ofPr between 2.17 and 10.86, the rat
t1

c/t2
c ranges from 1.827 to 2.407 atTr50.89 and from 1.496

to 1.887 atTr51.64 in the bulk solvent. It ranges from 2.12
to 3.085 atTr50.89 and from 1.950 to 2.684 atTr51.64 in
the network. In the network as well as in the bulk solvent,
find that the ratio decreases with increasing temperature.
thermore, the values in the network are higher than the
responding values in the bulk solvent. Thet1

c/t2
c is directly

related to the nature of rotation process, i.e.,t1
c/t2

c53.0 in-
dicates an isotropic rotational diffusion and smaller valu
indicate large angular jumps of the molecules@31#. There-
fore, here it is easier to activate large angular jumps w
increasing temperature. Besides the ratiot1

c/t2
c , the network

effects on the relaxation of the end-to-end vector are also
interest. In Fig. 7, the ratio oft1

c(N)/t1
c(S) is plotted vsPr ,

wheret1
c(N) is the characteristic relaxation time in the ne

work, andt1
c(S) is the corresponding quantity in the bu

solvent. Generally, the ratio tends to 1.0 with increasing pr
sure. This shows that the hindrance effect due to the netw
is larger at lower pressure, where the relaxation time in
network is close to twice that in the bulk solvent. Notice th
when the pressure increases, the solvent box has a sim
density as the network box, therefore, the hindrance effe
from network beads are not as apparent as before. No
also thatt1

c(N)/t1
c(S) increases with increasing temperatur

IV. CONCLUSION

The present work is a part of a systematic computer st
of network swelling using an explicit solvent. In Ref.@17#
and in this work, where we focus on a short-chain solve
we have developed an algorithm, that can be used to s
not only swelling of a polymer network by an explicit so

e

ia

FIG. 7. t1
c(N)/t1

c(S) as a function of reduced pressurePr . The
symbols are the simulation results, and the lines serve to guide
eye.
7-6
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COMPUTER SIMULATION STUDY ON THE SWELLING . . . PHYSICAL REVIEW E65 041807
vent, but more generally the chemical equilibrium of a po
mer network in contact with an explicit solvent under va
able thermodynamic conditions. For example, our algorith
in contrast to pure Monte Carlo methods, also allows
study of diffusion of solvent inside the network as a functi
of temperature and pressure~and with some known modifi-
cations also under anisotropic external stress!. This is an im-
portant aspect in industrial studies of the performance of
hesives~e.g., environmental attack on adhesive joints@32#!.

Also in Ref. @17# we have obtained a simple analyt
theory with the motivation to extend or fill gaps in the da
obtained via the computationally expensive simulations. T
most suitable candidate was seemed to be the simple F
er

s
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Huggins mean field model. Even though this is a very sim
lattice model, it can be shown to yield a good description
the thermodynamics of many real systems~such as alkane
mixtures; this has been shown for instance in Ref.@33#!. Our
extension contains parameters, as does the original mo
which can be adjusted to the simulation data in order
allow the above mentioned predictions beyond or in betw
simulation results. This idea works nicely for small solven
@17# and for networks with increased mesh size. It may n
be much good, however, for larger solvents as we show h
i.e., here the model could use improvement. Currently, w
is in progress in which we systematically vary the mesh s
of the model network as well as the solvent size@34#.
:
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